

AFRL-IF-RS-TR-2007-24
Final Technical Report
January 2007

AN OPERATIONAL DYNAMIC SITUATIONAL
ASSESSMENT CAPABILITY

RAM Laboratories, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Rome
Research Site Public Affairs Office and is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information
Center (DTIC) (http://www.dtic.mil).

AFRL-IF-RS-TR-2007-24 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

DAWN TREVISANI JAMES W. CUSACK
Work Unit Manager Chief, Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JAN 2007
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Feb 06 – Nov 06
5a. CONTRACT NUMBER

FA8750-06-C-0014

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

AN OPERATIONAL DYNAMIC SITUATIONAL ASSESSMENT
CAPABILITY

5c. PROGRAM ELEMENT NUMBER
62702F

5d. PROJECT NUMBER
459S

5e. TASK NUMBER
N6

6. AUTHOR(S)

Robert McGraw

5f. WORK UNIT NUMBER
02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
RAM Laboratories, Inc.
10525 Vista Sorrento Parkway
San Diego CA 92121-2766

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFSB
525 Brooks Rd
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2007-24

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 07-024

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The primary objective of the DSAP infrastructure is to allow Commanders and their staff at AOCs the ability to perform ‘what-if’
analysis of plans and alternatives ‘on-the-fly’ while continuing augmenting the real-time picture sensor inputs with simulated state-
estimated assessments. Enhancements to current DSAP Framework and software infrastructure were made to provide dynamic
situational awareness and an improved predictive capability that can be applied to an operational setting. RAM integrated the DSAP
Multiple Replication Framework utilizing JSAF with real-time databases and data link simulation provided by Theater Battle
Management Core System (TBMCS) and other C41 systems. RAM compared a real-time simulation with a simulation calibrated by
real-time-picture inputs from TBMCS and integrated the current predictive analysis capability with the dynamic situational
awareness capability for improved calibration of predictive inputs. They implemented interfaces between DSAP components that
allow its use in a Service-Oriented Architecture (SOA). This infrastructure will allow commanders to dynamically evaluate and
assess the situation in a timely fashion, incorporate prediction in real-time via faster than real-time simulation, support real-time
dynamic planning to address targets of opportunity and support a SOA.
15. SUBJECT TERMS
Dynamic Situation Assessment and Prediction (DSAP), software infrastructure, predictive simulation, operationally focused
simulation, C2 Decision Support, software frameworks, decision aid technologies

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Dawn Trevisani

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

37
19b. TELEPHONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

 i

Table of Contents
1.0 Introduction... 1

1.1 Significance to the Air Force .. 1

2.0 DSAP and the MRF for Predictive Operations... 3

2.1 Overview of the DSAP and MRF for Predictive Operations.. 3

2.1.1 DSAP Operation ... 3

2.1.2 DSAP Implementation .. 5

2.1.2.1 Predictive Analysis ... 5

2.2 MRF Components... 6

2.2.1 MultiRepTasker .. 6

2.2.2 MultiRepRTTasker ... 6

2.2.3 MultiRepManager ... 7

2.2.4 MultiRepGui ... 8

2.2.5 MultiRepWorker ... 9

2.2.6 Plan Evaluator... 10

3.0 Modifying the DSAP MRF For Dynamic Situational Awareness.................................... 14

3.1 DSAP Concept of Operations for Dynamic Prediction .. 14

3.2 Updates to the MRF.. 14

3.2.1 Updates to the MultiRepRTPEvaluator .. 16

3.2.2 MultiRepRTCWorker ... 17

3.2.3 MultiRepRTWorker.. 17

3.3 Real-time Extensions .. 19

3.4 Modification of Objects in MRF/JSAF .. 19

3.4.1 Checkpoint/Restart Approach... 19

3.4.2 Shared Memory Approach.. 20

3.4.3 Sockets Approach ... 20

3.4.4 Summary of Calibration Methods... 20

3.5 Extracting Damage Results... 20

3.6 Summary ... 21

4.0 Extending DSAP for a Service Oriented Architecture ... 22

4.1 Defining the Granularity of Services for the GIG .. 23

4.1.1 Coarse-grained Support for DSAP.. 23

 ii

4.1.2 Fine-Grained Support for DSAP... 23

4.2 Defining the Data and Services for GIG Use.. 24

4.2.1 Structuring Information to Be Exchanged .. 24

4.2.1.1 Military Scenario Description Language (MSDL) ... 24

4.2.1.2 Battle Management Language (BML) .. 25

4.2.1.3 Command and Control Information Exchange Data Model (C2IEDM) 25

4.2.2 Specifying the Web Services .. 25

4.2.3 Accessing and Communication with the Web Service ... 25

4.2.4 Registering and Locating Web Services ... 26

5.0 Future Work .. 27

5.1 Improved Calibration and C4I Data Update ... 27

5.2 Integrate with Additional JSB-RD Components... 27

5.3 Pushing Data ... 28

5.4 Installation of an Operational Capability.. 28

5.5 Exercise Participation ... 28

6.0 Bibliography ... 29

7.0 Acronyms.. 30

 iii

List of Figures

Figure 2-1: DSAP Operational View..3
Figure 2-2: COA Simulated Faster-Than-Real-Time for Prediction ..4
Figure 2-3: Evaluating Multiple Plans and Replications for DSAP ..4
Figure 2-4: The MRF ..6
Figure 2-5: Sequence Diagram for MultiRepTBMCSTasker and TBMCS: ..7
Figure 2-6: UML Diagram for Server Component Used for the MultiRepManager ..8
Figure 2-7: Activity Diagram for MultiRepManager's ProcessRtp() ...8
Figure 2-8: MultiRepGui Control Flow...9
Figure 2-9: MultiRepWorker Control Flow for Executing Faster-Than-Real-Time Simulations10
Figure 2-10: Control Flow for MultiRepPlanEvaluator ..11
Figure 2-11: The MRF GUI ..12
Figure 2-12: Selecting and Issuing a Tasking Script ..12
Figure 2-13: GUI kicking off a JSAF Replication...13
Figure 2-14: Plan Evaluation Results...13
Figure 3-1: Real-time Simulation and Updates for State Estimation..14
Figure 3-2: MRF Updates for Dynamic Situational Awareness Capability ...15
Figure 3-3: RTP Evaluator Modification To Prune Replications ...16
Figure 3-4: RTP Modification to Reflect Tasker Enhancements ..16
Figure 3-5: Sequence Diagram for MultiRepRTCWorker ..17
Figure 3-6: Sequence Diagram for MultiRepRtWorker ..18
Figure 3-7: Dynamic Situation Assessment Sequence Diagram. ...18
Figure 3-8: Incorporating Route Planning in the MRF ...19
Figure 3-9: Incorporating Real-time Data Feeds for Providing Blue Force Information19
Figure 4-1: Enhancing DSAP for a Service Oriented Architecture ..22

 1

1.0 Introduction
In order to develop decision science technologies for future Air Operations Centers (AOCs), the
Air Force Research Laboratory has defined a program to conduct and sponsor research and
development of revolutionary decision-support concepts. A goal of this program is to apply
advanced information technologies to promote tactics, techniques and procedures that enable
situational awareness and predictive capabilities for future AOCs. One effort that addresses this
goal involves the development of a Dynamic Situation Assessment and Prediction (DSAP)
Framework. To address predictive analysis of plans in the area of decision support, RAM
Laboratories has developed a DSAP Framework and its underlying Multiple Replication
Framework (MRF) for AFRL/IFSB. The DSAP Framework leverages the state of the art in
advanced information management techniques in the fields of simulation, distributed computing,
and information management to provide the underlying functionality to evaluate Commander’s
plans and their alternatives using predictive simulation while calibrating with the real-time
Command Control Communications and Computers Intelligence (C4I) picture. This Final Report
details efforts of RAM Laboratories in developing an Operational Situational Awareness
Capability based on this DSAP software infrastructure.

1.1 Significance to the Air Force
The DSAP concept grew out of John R. Surdu’s Simulation in Operations research project and
prototype system (OpSim). There are two basic functions of the DSAP concept: (1) Dynamic
Situation Awareness, and (2) Prediction. The overall concept involves the use of embedded
simulation in an operational environment to support decision-makers in the planning process.
Providing this capability allows decision makers to use simulation to assist in planning
operations, monitor current operations, determine deviations from a plan, and predict and
determine outcomes of a given plan. The resulting system allows military Commanders to utilize
timely battlefield information to make accurate decisions based on the effects of their plans and
the current operational picture while providing an underlying capability to allow the Commander
to dynamically modify an existing plan “on the fly” to address emerging information detected by
sensors or provided by gathered intelligence. Specifically this concept can be leveraged by the
Commander’s Predictive Environment (CPE) to enable the prediction of likely future events
while considering plan options within the context of the mission space, predicted enemy intent,
actions, and emerging threats. In addition, through its dynamic situational awareness capability,
the DSAP Framework strives to augment sensor information in the operational domain by using
real-time simulation to estimate the internal state of resources and assets that may not be visible
from current real-time-picture information.

The DSAP Framework builds on advanced information technologies to provide a predictive
analysis of existing plans and alternatives within the context of the real-time operational picture.
There are five main components of the DSAP Framework: (1) the Multiple Replication
Framework (MRF) that is used for evaluating plans and alternative Courses of Action (COAs)
against campaign objectives on available processors, (2) the Simulation Framework that allows
real-time simulation and faster-than-real-time simulations to be developed in a manner that
calibrates with real-time data and supports rollback/rollforward capabilities that can be used to
track the real-time operational picture, (3) an Optimization Framework that supports plan
generation through the use of simulation-in-the-loop, (4) the simulation component which
simulates plans/COAs and their alternatives in both a real-time and predictive fashion (through

 2

the use of faster-than-real-time simulation, and (5) real-time databases and data feeds. This
framework provides the capability to dynamically assess situations, dynamically predict the
outcomes of plans, and will eventually be used to enhance the plan generation process.

RAM Laboratories, with the Air Force Research Laboratory previously developed a prototype
DSAP Framework that provides a predictive capability through the use of faster-than-real-time
predictive simulation using JSAF, and real-time data for calibration from the Theater Battle
Management Core System (TBMCS) Air Operations Database (AODB) and Modernized
Integrated Database (MIDB). This effort built on the previously developed capability to improve
dynamic situational awareness by implementing and integrating real-time simulation components
with additional real-time databases and data feeds and the existing predictive analysis capability.
This effort also installed the DSAP Framework in a laboratory setting to provide a
demonstratable capability that can be transitioned to the operational domain and used as a
building block for implementing additional decision-support technologies.

The subsequent sections of this Technical Report discuss the further implementation of the
DSAP software infrastructure. This work includes implementing the dynamic situational
awareness piece of DSAP in support of operations while also further developing the predictive
analysis functionality. The remainder of this report discusses the following items:

• Section 2.0 discusses the state of the DSAP Framework at the start of the effort to present the
context in which this project was conducted

• Section 3.0 discusses the design, modification, and implementation of a Multiple Replication
Framework (MRF) to support dynamic situational awareness support for operations.

• Section 4.0 details work performed on this effort to transition DSAP for use on the Global
Information Grid (GIG).

• Section 5.0 outlines future work.

• Section 6.0 provides the Bibliography for this Final Report.

• Section 7.0 defines the acronyms used in developing this report.

 3

2.0 DSAP and the MRF for Predictive Operations
RAM Laboratories has developed the DSAP Framework to address predictive analysis of plans
and Courses of Action in order to provide inputs to the operational C2 environment at Air
Operations Centers. This effort, builds on the DSAP Framework and its underlying Multiple
Replication Framework (MRF) to provide a dynamic situational awareness capability. This
section discusses the previously implemented MRF that supports predictive analysis of plans.
This section is meant to provide the reader of this Final Technical Report with the basis for the
work that was performed under this effort and documented in Sections 3 and 4.

2.1 Overview of the DSAP and MRF for Predictive Operations
The overall DSAP Framework is built on RAM Laboratories’ underlying Extensible Grid
technology and utilizes Object Request Broker (ORB) concepts. This technology is open source
and has been developed to support a number of defense programs involving the Air Force, Navy,
and Missile Defense agency. The high level overview of DSAP is shown in Figure 2-1.

DSAP
– Workers (W) simulate plans and evaluate results
-- Taskers (T) interact with C2 and connect to C4I
-- Managers (M) monitor control flow

W

DSAP Environment

Network
Communications

(GIG)

C4I DBs
T-BONE

Target List

Location
Tracks

Target
List Order

Unit
Enemy Unit

Mission
ATOs

Tracks

Facilities
ATOs

FrOB
W

W

W

T

T

M

DSAP
– Workers (W) simulate plans and evaluate results
-- Taskers (T) interact with C2 and connect to C4I
-- Managers (M) monitor control flow

W

DSAP Environment

Network
Communications

(GIG)

C4I DBs
T-BONE

Target List

Location
Tracks

Target
List Order

Unit
Enemy Unit

Mission
ATOs

Tracks

Facilities
ATOs

FrOB
W

W

W

T

T

M

Network
Communications

(GIG)

C4I DBs
T-BONE

Target List

Location
Tracks

Target
List Order

Unit
Enemy Unit

Mission
ATOs

Tracks

Facilities
ATOs

FrOB
W

W

W

T

T

M

Figure 2-1: DSAP Operational View

2.1.1 DSAP Operation
DSAP encompasses two key elements: (1) dynamically assessing the operational situation and
(2) dynamically predicting the outcomes of plans and alternatives based on the current situation.
This section covers the dynamic prediction capabilities of DSAP.

Figure 2-2 illustrates the predictive capability of DSAP. The individual plans y(t) can be
idealized and mapped out in time. This basically represents the behavior of the plan when the
plan is executed “according to plan”. Plans and their alternatives are then simulated faster-than-
real-time, as denoted by the x(t) axis. By executing these plans faster-than-real-time, we provide
a predictive look into how a plan may unfold. Multiple plans and multiple replications of each
plan may be executed to provide a statistically significant outlook at a plan’s anticipated

 4

outcomes based on the current operational information. This provides the dynamic prediction
capability.

tx(t)
Simulation-
Based
Prediction

Plan A

Plan B

Rep 1
Rep 2

Rep N
..
..........

...

...

...
...

Rep 1
Rep 2

Rep N
..
....

y(t)Plan
Forecasting

Plan A

Plan B t
...
...

tx(t)
Simulation-
Based
Prediction

Plan A

Plan B

Rep 1
Rep 2

Rep N
..
..........

...

...

...
...

Rep 1
Rep 2

Rep N
..
....

tx(t)
Simulation-
Based
Prediction

Plan A

Plan B

Rep 1
Rep 2

Rep N
..
....

Rep 1
Rep 2

Rep N
..
...
............................

.........

......

......
.........

Rep 1
Rep 2

Rep N
..
....

Rep 1
Rep 2

Rep N
..
...
..........

y(t)Plan
Forecasting

Plan A

Plan B t
...
...y(t)Plan

Forecasting

Plan A

Plan B t
......
......

Figure 2-2: COA Simulated Faster-Than-Real-Time for Prediction

At update points, the predictive simulations, x(t), are evaluated against the current real-time
picture (RTP) . This evaluation process is used to rank plans, identify plans and replications that
may be invalid, and prune plans and replications depending on their rank and validity.

A high level overview of the current operation of the DSAP prototype with respect to these
timelines is shown in Figure 2-3. This high level overview encompasses the MRF, the simulation
component (JSAF), and the real-time information updates (TBMCS). For the DSAP prototype,
the MRF is used to farm-out and run multiple evaluations of both plans and alternative COAs via
faster-than-real-time simulation. When real-time updates are available, real-time state
information from the real-time state estimation simulation and TBMCS inputs are saved and
compared with state information from the predictive plans. The plans are evaluated against each
other and against the real-time picture. Plan replications that are deemed invalid (in comparison
to the real-time picture) are automatically pruned and replaced. In addition, the Commander has
the ability to replace plans with other alternatives based on their evaluation.

Replication 1

2
.
.
.

n

TBMCS

EvaluateEvaluateEvaluate EvaluateEvaluateEvaluate

t0 t1

t0 t1

t0 t1

t1 t2

t1 t2

RTP (Real-Time Picture)
Update

RTP
Update

. . .

Real-Time JSAF Real-time CalibrateCalibrateCalibrate CalibrateCalibrateCalibrate

Replication 1

2
.
.
.

n

TBMCS

EvaluateEvaluateEvaluate EvaluateEvaluateEvaluate

t0 t1

t0 t1

t0 t1

t1 t2

t1 t2

RTP (Real-Time Picture)
Update

RTP
Update

. . .

Real-Time JSAF Real-time CalibrateCalibrateCalibrate CalibrateCalibrateCalibrate

Figure 2-3: Evaluating Multiple Plans and Replications for DSAP

 5

2.1.2 DSAP Implementation
This DSAP prototype allows multiple replications of a simulation to run concurrently across
parallel and distributed platforms, gather global statistics on the simulations upon completion,
splice up simulation executions into shorter runs, and compare simulation results with real-time
data to prune simulations that diverge from the real-time picture. This process is managed by the
MRF in conjunction with the simulation component, JSAF, and real-time information updates
provided by TBMCS. The MRF architecture is shown in Figure 2-4.

2.1.2.1 Predictive Analysis
In the MRF, the MultiRepTasker client functions to kick off the plan evaluation process by
tasking the simulation of replications of COAs and alternate COAs to available
MultiRepWorkers running JSAF faster-than-real-time. The MultiRepTasker allows the user to
determine which simulation scenario to run, the scenario execution name, and the start and end
time of the simulation. Objectives for the COA are also specified through the use of the Console
or the MultiRepGui. The MultiRepManager functions as the server in that it handles receiving,
queuing, and intelligent task distribution. The MultiRepManager farms out replications for each
plan that are run faster-than-real-time on available processors. When completed, the results of
those replications are written to memory and new replications can begin in that same time slot.

An overview of the current capabilities of the DSAP prototype is shown via the MRF in Figure
2-4. The MRF serves to farm-out and run multiple replications of plans and alternative COAs via
faster-than-real-time simulation. When real-time updates are available, state information from
the real-time state estimation simulation are calibrated with real-time C4I inputs, saved and
compared with the state information from the predictive plans. Plan replications that diverge
from the real-time picture are automatically pruned and replaced. Our MRF prototype manages
this entire process by utilizing TBMCS for our real-time C4I inputs and Joint SemiAutomated
Forces (JSAF) as both the real-time and faster-than-real-time simulation components. JSAF was
selected as our simulation component because of its ability to simulate a Joint Urban Operations
(JUO) environment (as well as theater operations) as well as its enhanced support for intelligent
ground clutter models, which is the current focus for the Air Force sponsor. It should also be
noted that other simulations can be used as the simulation component depending on the desired
application.

 6

MR_RTP_Evaluator
(Worker)

MR_Workers

FTRT JSAF
Execution

MR_RT_Worker
RT JSAF
Execution

MR_Plan_Evaluator
(Worker)

MR_Manager
(Server)

MR_Tasker

(TBMCS)

MR_RT_Tasker

MR_Gui

MuiltiRepRTPEvaluator
(Worker)(Worker)

MultiRepWorkers

FTRT JSAF
Execution

MultiRepRTWorker
RT JSAF
Execution

MultiRepPlanEvaluator
(Worker)(Worker)

MultiRepManager
(Server)(Server)

MultiRepTasker

(TBMCS)

MultiRepRTTasker

MultiRepGui

MR_RTP_Evaluator
(Worker)

MR_RTP_Evaluator
(Worker)

MR_Workers

FTRT JSAF
Execution

MR_RT_Worker
RT JSAF
Execution

MR_Plan_Evaluator
(Worker)

MR_Plan_Evaluator
(Worker)

MR_Manager
(Server)

MR_Manager
(Server)

MR_Tasker

(TBMCS)

MR_RT_Tasker

MR_Gui

MuiltiRepRTPEvaluator
(Worker)(Worker)

MultiRepWorkers

FTRT JSAF
Execution

MultiRepRTWorker
RT JSAF
Execution

MultiRepPlanEvaluator
(Worker)(Worker)

MultiRepManager
(Server)(Server)

MultiRepTasker

(TBMCS)

MultiRepRTTasker

MultiRepGui

Figure 2-4: The MRF

2.2 MRF Components
The MRF contains three basic types of components: Taskers, Workers, and a Manager. Taskers
function to task the manager with applications for workers to run, and specify how these
applications should be initialized. Workers complete the tasks assigned by the manager,
including executing the simulation replications, saving the results of the replications, and
evaluating and comparing the results of the replications to the plan objectives and real-time
picture. The manager divides the replications into smaller time segments and assigns these tasks
to the workers, handles the bookkeeping, and tackles flow control issues. Figure 2-4 illustrates
each of these components and their connectivity with the manager. The role of each of the
specific MRF components is discussed in the following subsections.

2.2.1 MultiRepTasker
The MultiRepTasker component interfaces with Command and Control to send a predictive
simulation task to the server. The MultiRepTasker provides connectivity to the server and allows
the user to specify initialization parameters such as the simulation execution name, initial
scenario file, start and end time, simulation scaling rate, and replication number.

2.2.2 MultiRepRTTasker
The MultiRepRTTasker component issues a task to the server to initiate the real-time worker.
The MultiRepRTTasker provides connectivity to the server and allows the user to specify the
simulation execution name, initial scenario file, name of the plan the task corresponds to, and the
time interval between saving the state of the simulation.

The Real-Time Tasker component, MultiRepTBMCSTasker, provides the capability to allow the
user to retrieve the Real-Time Picture (RTP) from TBMCS or another C4I data source via
command line or GUI. The sequence diagram defining the operation of the
MultiRepTBMCSTasker is shown in Figure 2-5.

 7

TBMCSTBMCSTBMCS

Query DatabaseQuery Database

ExecuteExecute
QueryQuery

MultiRepTbmcsTaskerMultiRepTbmcsTaskerMultiRepTbmcsTasker

Return ResultsReturn Results

Disconnect from DatabaseDisconnect from Database

Connect to DatabaseConnect to Database

AcknowledgementAcknowledgement

TBMCSTBMCSTBMCS

Query DatabaseQuery Database

ExecuteExecute
QueryQuery

MultiRepTbmcsTaskerMultiRepTbmcsTaskerMultiRepTbmcsTasker

Return ResultsReturn Results

Disconnect from DatabaseDisconnect from Database

Connect to DatabaseConnect to Database

AcknowledgementAcknowledgement

Figure 2-5: Sequence Diagram for MultiRepTBMCSTasker and TBMCS:

The MultiRepTBMCSTasker is a Tasker component that automates the process of retrieving real-
time C4I information from TBMCS. For TBMCS connectivity, both ODBC and JDBC were
tried. Some problems existed with ODBC and have not been resolved. The Tasker/JDBC
approach to TBMCS connectivity has been implemented and tested.

2.2.3 MultiRepManager
The server, or MultiRepManager, component is the core of the MRF. The MultiRepManager is
responsible for 1) managing the execution of long replications by splicing them in time, 2)
constructing the necessary parameters needed for a worker to launch and save a JSAF execution,
3) constructing the necessary parameters for launching an evaluation on an evaluator component,
4) displaying diagnostics related to the execution of multiple replications, 5) identifying when
replications are completed, 6) pruning and re-tasking replications that are off course from the
real-time picture, and 7) restarting unfinished replications in the event of a worker crash or
disconnect.

The MultiRepManager design builds off of the WpServer used to implement the Extensible Grid.
The Server capability for this effort inherits from the WpNetGridServer, which is the server for
the Extensible Grid, which in turn inherits from WpServer, which is the basic server capability.
The UML Class Diagram for the Server design is shown in Figure 2-6.

 8

Figure 2-6: UML Diagram for Server Component Used for the MultiRepManager

The MultiRepManager is responsible for managing the execution and evaluation of the
replications. The Activity Diagram for the MultiRepManager with respect to the ProcessRtp()
function is shown in Figure 2-7. This Activity Diagram defines the process for managing the
replications through their RTP evaluation.

Evaluation in Progress?Evaluation in Progress?

Evaluations complete?Evaluations complete?
Latest results completeLatest results complete

& beyond & beyond timetimeRtpRtp

Prune RTPsPrune RTPs

Set NumCompleted = 0Set NumCompleted = 0

NoNo
YesYes

NoNo

YesYesYesYes

NoNo

Task Results to GridTask Results to Grid

Copy latest results to RtpMgrCopy latest results to RtpMgr

Determine NumEvaluationsDetermine NumEvaluations

Evaluation in Progress?Evaluation in Progress?

Evaluations complete?Evaluations complete?
Latest results completeLatest results complete

& beyond & beyond timetimeRtpRtp

Prune RTPsPrune RTPs

Set NumCompleted = 0Set NumCompleted = 0

NoNo
YesYes

NoNo

YesYesYesYes

NoNo

Task Results to GridTask Results to Grid

Copy latest results to RtpMgrCopy latest results to RtpMgr

Determine NumEvaluationsDetermine NumEvaluations

Figure 2-7: Activity Diagram for MultiRepManager's ProcessRtp()

2.2.4 MultiRepGui
The MultiRepGui component provides the user with diagnostics with respect to operation of the
MRF. The MultiRepGui also allows the user to monitor the status of the MRF. The Sequence
Diagram for the MultiRepGui is shown in Figure 2-8. In addition to simply monitoring status and
setting the time interval for faster-than-real-time simulations, the MultiRepGui has been modified
to host our GUI. The MultiRepGui now queries the server to return the status of replications,
provides functionality to modify time intervals and end times, provides functionality to modify
pruning thresholds, and provides the capability to allow the user to prune replications or plans
using the GUI.

WpServerWpServer

WpNetGridServerWpNetGridServer

WpNetServerMultiRepWpNetServerMultiRep Any other Application…Any other Application…WpNetGridSystemServerWpNetGridSystemServer

(Unix) (JSAF) (Anything)

WpServerWpServer

WpNetGridServerWpNetGridServer

WpNetServerMultiRepWpNetServerMultiRep Any other Application…Any other Application…WpNetGridSystemServerWpNetGridSystemServer

(Unix) (JSAF) (Anything)

WpServerWpServer

WpNetGridServerWpNetGridServer

WpNetServerMultiRepWpNetServerMultiRep Any other Application…Any other Application…WpNetGridSystemServerWpNetGridSystemServer

(Unix) (JSAF) (Anything)

 9

MultiRepManagerMultiRepManagerMultiRepManager

MonitorStatusMonitorStatus
GetsGets
StatusStatus

MultiRepGuiMultiRepGuiMultiRepGui

ReturnStatusReturnStatus

ModifyTimeIntervalModifyTimeInterval
UpdatesUpdates
timeIntervaltimeInterval

GetReplicationStatusGetReplicationStatus
GetsGets
StatusStatusReturnStatusReturnStatus

ModifyEndTimeModifyEndTime
UpdatesUpdates
endTimeendTimeModifyPruningThresholdModifyPruningThreshold
UpdatesUpdates
pruningThresholdpruningThresholdPrune Replication / PlanPrune Replication / Plan
PrunesPrunes
Replication / PlanReplication / Plan

MultiRepManagerMultiRepManagerMultiRepManager

MonitorStatusMonitorStatus
GetsGets
StatusStatus

MultiRepGuiMultiRepGuiMultiRepGui

ReturnStatusReturnStatus

ModifyTimeIntervalModifyTimeInterval
UpdatesUpdates
timeIntervaltimeInterval

GetReplicationStatusGetReplicationStatus
GetsGets
StatusStatusReturnStatusReturnStatus

ModifyEndTimeModifyEndTime
UpdatesUpdates
endTimeendTimeModifyPruningThresholdModifyPruningThreshold
UpdatesUpdates
pruningThresholdpruningThresholdPrune Replication / PlanPrune Replication / Plan
PrunesPrunes
Replication / PlanReplication / Plan

Figure 2-8: MultiRepGui Control Flow

2.2.5 MultiRepWorker
The Worker component, MultiRepWorker, receives simulation tasking from the
MultiRepManager and launches predictive JSAF executions that run faster-than-real-time. The
Worker is responsible for launching JSAF replications faster-than-real-time for a predetermined
length of time. This command is accompanied by parameter sets (specifying the SimRate, start
time, end time and other variables), environment variables and scenario spreadsheets. The
Worker also packs up results from the replication execution in spreadsheet format and sends the
information back to the MultiRepManager.

Upon completion of the replication, the Worker saves the state of the simulation to disk and
sends it to the server for later evaluation and comparison with real-time data and the plan
objectives. Replications that stray from the real-time picture are automatically pruned, re-tasked
by the server, and initialized to match the current state. Replications that fail to meet the plan
objectives can be manually pruned by Command Staff, and if pruned, they are automatically re-
tasked by the server and initialized to match the current state.

The Sequence Diagram specifying the operation of the Worker executing faster-than-real-time
JSAF scenarios is shown in Figure 2-9 with respect to the rest of the MRF. This is the heart of
the predictive capability for DSAP/MRF.

 10

MultiRepManagerMultiRepManagerMultiRepManager

ProcessRep() TASKProcessRep() TASK

ManageManage
TaskTask

MultiRepWorkerMultiRepWorkerMultiRepWorkerMultiRepTaskerMultiRepTaskerMultiRepTasker JSAFJSAFJSAF

LoopsLoopsFarm out TasksFarm out Tasks
(if possible)(if possible)

ProcessRep() REQUESTProcessRep() REQUEST

ProcessRep() RESPONSEProcessRep() RESPONSE

Set Environment Variables Set Environment Variables
((execution, startTime, etcexecution, startTime, etc.).)

Reads Envs,Reads Envs,
Runs Exec,Runs Exec,
Saves, &Saves, &
ExitsExits

LaunchesJSAFLaunchesJSAF

MultiRepManagerMultiRepManagerMultiRepManager

ProcessRep() TASKProcessRep() TASK

ManageManage
TaskTask

MultiRepWorkerMultiRepWorkerMultiRepWorkerMultiRepTaskerMultiRepTaskerMultiRepTasker JSAFJSAFJSAF

LoopsLoopsFarm out TasksFarm out Tasks
(if possible)(if possible)

ProcessRep() REQUESTProcessRep() REQUEST

ProcessRep() RESPONSEProcessRep() RESPONSE

Set Environment Variables Set Environment Variables
((execution, startTime, etcexecution, startTime, etc.).)

Reads Envs,Reads Envs,
Runs Exec,Runs Exec,
Saves, &Saves, &
ExitsExits

LaunchesJSAFLaunchesJSAF

Figure 2-9: MultiRepWorker Control Flow for Executing Faster-Than-Real-Time Simulations

At update time boundaries, the real-time simulations running on MultiRepWorker components
are synchronized with the real-time picture (in this case, live or emulated data from the Theater
Battle Management Core System’s (TBMCS) MIDB and AODB, which is updated every fifteen
minutes via subscription). The MultiRepRTTasker or MultiRepTBMCSTasker client feeds real-
time information from TBMCS to the system and initiates the update process.

2.2.6 Plan Evaluator
The Plan Evaluator component, MultiRepPlanEvaluator, is responsible for comparing the state
of the saved faster-than-real-time replications with the plan objectives. The
MultiRepPlanEvaluator is a Worker that evaluates the results of the JSAF replication executions
against other results. The MultiRepPlanEvaluator takes each of the result spreadsheets and
evaluates them to determine the “best” plan. The evaluation is performed by executing the
function PlanEvaulator(). The control flow for the MultiRepPlanEvaluator is shown in Figure
2-10, when considering the sequence of operations between the MultiRepPlanEvaluator,
MultiRepManager, and MultiRepWorkers. The MultiRepPlanEvaluator requests tasks from the
server. When results spreadsheets are available at the MultiRepManager, those results are tasked
to the MutliRepPlanEvaluator, which evaluates the effectiveness of each plan. The effectiveness
results are then sent back to the MultiRepManager, and the MultiRepRTPEvaluator is also tasked
to begin evaluator those results against the current real-time picture.

 11

MultiRepManagerMultiRepManagerMultiRepManagerMultiRepWorkerMultiRepWorkerMultiRepWorker MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator

Send Task: Send Task: ResultResult
Completed andCompleted and
Validated TaskValidated Task

Return Task: Return Task: ResultResult

Creates SharedCreates Shared
MemoryMemory

LaunchLaunch
EvalEval

LoopsLoops

Request Task: Request Task: ResultResult

Send Effectiveness ValuesSend Effectiveness Values

Task RtpEvaluatorTask RtpEvaluator

MultiRepManagerMultiRepManagerMultiRepManagerMultiRepWorkerMultiRepWorkerMultiRepWorker MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator

Send Task: Send Task: ResultResult
Completed andCompleted and
Validated TaskValidated Task

Return Task: Return Task: ResultResult

Creates SharedCreates Shared
MemoryMemory

LaunchLaunch
EvalEval

LoopsLoops

Request Task: Request Task: ResultResult

Send Effectiveness ValuesSend Effectiveness Values

Task RtpEvaluatorTask RtpEvaluator

Figure 2-10: Control Flow for MultiRepPlanEvaluator

Workers (MultiRepPlanEvaluator and MultiRepRTPEvaluator) are used to evaluate the
predictive simulation executions with respect to both their objectives and the real-time picture.
The evaluation process computes both the Raw Effectiveness and the Relative Effectiveness of
each replication. These Measures Of Effectiveness (MOEs) are used to rank each COA and
determine if each plan is consistent with the real-time picture. An alternative plan may be
selected or the existing COA may be maintained depending on its effectiveness. Also, if the
current real-time picture shows that an alternative COA is no longer valid, that COA can be
pruned or replaced by a valid alternative COA. Scenario data within the MRF’s evaluation
process is also updated to reflect changes in assets and resource status based on real-time picture
updates. At that point, the COAs and alternates are once again farmed out and executed on the
available processors.

The MRF GUI is shown in Figure 2-11. The GUI provides a graphical interactive interface to the
MRF that allows Commanders to task the execution of simulation plans and replications, view
the progress and performance of the plans, and prune ineffective plans. The graph at the bottom
of the GUI plots the raw and relative effectiveness of each plan over time. These metrics are used
to gauge the effectiveness and performance of the Commander’s plan.

 12

Figure 2-11: The MRF GUI

Plans and replications are initiated in the MRF by issuing a tasking script from the GUI. As
shown in Figure 2-12, a file selector tool allows the Commander to select a tasking script to kick
off the process. The GUI will be expanded to allow the Commander to start plans and
replications via menus instead of scripts.

After the script has been selected, the MRF takes control by sending the task to available
workers, as shown in Figure 2-13.

Figure 2-12: Selecting and Issuing a Tasking Script

 13

Figure 2-13: GUI kicking off a JSAF Replication

After the simulation time segment is complete, the MRF automatically performs the plan
evaluation and real-time picture evaluation, if the real-time data update was received. Figure
2-14 shows the plan evaluation results of a replication.

Because of the uncertain nature of predicting the outcome of plans, it is important to execute
multiple replications of a plan and statistically analyze the results. The MRF calculates the mean
and standard deviation of the effectiveness values for each time step in the simulation. These
mean values and their standard deviations can be fitted using χ2 analysis to obtain time-based
curves that provide trend analysis. The χ2 analysis is used to compare both the simulated and
observed results with the expected results of the plan.

Figure 2-14: Plan Evaluation Results

 14

3.0 Modifying the DSAP MRF for Dynamic Situational
Awareness

This effort focused on providing the real-time dynamic situational awareness capability for
operational C2 through the use of embedded simulation. The earlier DSAP work had focused on
implementing the predictive analysis component. This effort focused on implementing the
dynamic situational awareness component that utilized both a real-time simulation component
and a real-time calibrated simulation component. This section discusses the modifications that
were made to the DSAP framework to provide these capabilities.

3.1 DSAP Concept of Operations for Dynamic Prediction
The DSAP operational concept describes how the DSAP capability can be applied for dynamic
situational awareness. Figure 3-1 shows the evolution of several plans with respect to time. The
xp(t) axis shows the current plan being simulated in real-time. The real-time simulation, in our
case JSAF, tracks the real-time operational picture, while updating Blue and Red Force
information via real-time updates. Real-time updates, denoted by the z(t) axis, are provided to the
real-time simulation of the current plan. These updates are used to correct the predicted behavior
of the simulated COA. The updated simulation can be checkpointed to save and estimate the
state of the real-time operational picture. This is denoted by xe(t). This allows us to store the
internal state, xe(t) of the mission in a manner that will augment the information provided by
external “visible” behaviors. This provides us with our dynamic situation awareness capability.

tx(t)
Simulation-
Based
Prediction

Plan A

Plan B

Rep 1
Rep 2

Rep N
..
..........

...

...

...
...

Rep 1
Rep 2

Rep N
..
....

Real-time
State Inputs z(t)

xp(t)Real-time
State
Estimator

TBMCS

xe(t)

t

t

...

...

tx(t)
Simulation-
Based
Prediction

Plan A

Plan B

Rep 1
Rep 2

Rep N
..
....

Rep 1
Rep 2

Rep N
..
...
............................

.........

......

......
.........

Rep 1
Rep 2

Rep N
..
....

Rep 1
Rep 2

Rep N
..
...
..........

Real-time
State Inputs z(t)

xp(t)Real-time
State
Estimator

TBMCS

xe(t)

t

t

......

......

Figure 3-1: Real-time Simulation and Updates for State Estimation

3.2 Updates to the MRF
The MRF discussed in Section 2.0 provides a predictive analysis capability for C2 through the
use of embedded simulations. As mentioned, the MRF was built on RAM Laboratories
Extensible Grid Architecture and our underlying Object Request Broker technology. The MRF
implemented in support of predictive operations consisted of the following components: a
MultiRepTasker to kick off simulation and analysis runs, a MultiRepTBMCSTasker to pull-in
data from TBMCS’ AODB and MIDB, MultiRepWorkers to execute simulations using JSAF or
other simulation environments of choice, MultiRepPlanEvaluators to evaluate predicted plan

 15

effectiveness, MultiRepRTPEvaluators to evaluate predicted plan effectiveness in comparison
with the TBMCS updates, and the MultiRepManager which was used to maintain the control
flow and monitor the flow of data through the MRF.

For this effort, the MRF was modified to provide a real-time dynamic situational awareness
capability. In this manner, the MRF simulated the current plans in real-time. Two real-time
simulations were supported: a real-time simulation of the idealized plan, and a real-time
simulation that was constantly calibrated with TBMCS and eventually TBONE inputs. The
modifications to the MRF architecture, topology, data flow and sequence of operations are
discussed in the following sections.

This effort updated the MRF as shown in Figure 3-2. Here, a Real-time Worker
(MultiRepRTWorker) and a Real-Time Calibrated Worker (MultiRepRTCWorker) are added to
the framework. The MultiRepRTWorker component is responsible for executing the idealized
simulation of the plan using the simulation environment of choice (in our case JSAF). This
simulation is not calibrated with real-time inputs. Its intent is to play out the idealized plan based
on the state of operations at the plan initiation. The simulated state of operations for the idealized
plan is saved and sent to the MultiRepManager every user-defined time segment. Our
implementation uses JSAF’s native damage reporting capability to store the plan state in comma
delimited format. This idealized plan information is used to compute Real Effectiveness by the
MultiRepRTPEvaluator.

The second component implemented on this effort is the real-time calibrated worker
(MultiRepRTCWorker). This component receives real-time updates, and must shut down and
restart to receive and reflect the updates. This process was implemented on this effort using
JSAF’s checkpoint and restarted capabilities. Additional work was performed to calibrate this
worker (and thus the JSAF simulation) without utilizing this checkpoint restarted process. This
approach would allow for the worker to receive and reflect the updates while the simulation is
running via sockets, shared memory or additional approaches.

MultiRepRTPEvaluator

MultiRepWorkers

FTRT JSAF
Execution

MultiRepRTWorker

RT JSAF
Execution

MultiRepPlanEvaluator

MultiRepManager

MultiRepTasker

(TBMCS)

MultiRepRTTasker

MultiRepGui

MultiRepRTCWorker

MultiRepRTPEvaluator

MultiRepWorkers

FTRT JSAF
Execution

MultiRepRTWorker

RT JSAF
Execution

MultiRepPlanEvaluator

MultiRepManager

MultiRepTasker

(TBMCS)

MultiRepRTTasker

MultiRepGui

MultiRepRTCWorker

Figure 3-2: MRF Updates for Dynamic Situational Awareness Capability

 16

3.2.1 Updates to the MultiRepRTPEvaluator
For DSAP’s predictive operations, our approach used a MultiRepRTPEvaluator that compared
the state of predictive plans to the current real-time picture to ensure that the predictive analyses
were consistent with the current state of operations. In support of the Dynamic Situational
Awareness capability, this MultiRepRTPEvaluator was modified to ensure that the RTP
Evaluator compared the idealized plan (simulated on MultiRepRTWorkers) with the calibrated
real-time plan (simulated on MultiRepRTCWorkers). This approach resulted in several updates to
the control flow associated with the MultiRepRTPEvaluator. The first change, shown in Figure
3-3, added functionality for looping through RTP evaluation results, and pruning replications that
exceed some (user-specified) threshold. This modified control flow also assumes that the
MultiRepRTPEvaluator has connected to the server. The second modification to this control
flow, shown in Figure 3-4, shows the modified control flow based on changes made to the
MultiRepTasker components which combined the functionality of the emulated TBMCS and
TBMCS real-time calibration process.

MultiRepManagerMultiRepManagerMultiRepManager

Send Task: Send Task: RtpRtp

MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator MultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtpEvaluator

Send Task: Send Task: ResultResult
CompletesCompletes
Plan EvaluationPlan Evaluation

Return Task: Return Task: RtpRtp & & ResultResult

Creates SharedCreates Shared
MemoryMemory

LaunchLaunch
EvalEval

LoopsLoops
Request Task: Request Task: RtpRtp & & ResultResult

PruneRep() TASKPruneRep() TASK

MultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker MultiRepManagerMultiRepManagerMultiRepManager

Send Task: Send Task: RtpRtp

MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator MultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtpEvaluator

Send Task: Send Task: ResultResult
CompletesCompletes
Plan EvaluationPlan Evaluation

Return Task: Return Task: RtpRtp & & ResultResult

Creates SharedCreates Shared
MemoryMemory

LaunchLaunch
EvalEval

LoopsLoops
Request Task: Request Task: RtpRtp & & ResultResult

PruneRep() TASKPruneRep() TASK

MultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker

Figure 3-3: RTP Evaluator Modification to Prune Replications

MultiRepManagerMultiRepManagerMultiRepManager

Send Task: Send Task: RtpRtp

MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator MultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtpEvaluator

Send Task: Send Task: ResultResult
CompletesCompletes
Plan EvaluationPlan Evaluation

Return Task: Return Task: RtpRtp & & ResultResult

Creates SharedCreates Shared
MemoryMemory

LaunchLaunch
EvalEval

LoopsLoops
Request Task: Request Task: RtpRtp & & ResultResult

PruneRep() TASKPruneRep() TASK

MultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker

MultiRepTbmcsTaskerMultiRepTbmcsTaskerMultiRepTbmcsTasker

or

MultiRepManagerMultiRepManagerMultiRepManager

Send Task: Send Task: RtpRtp

MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator MultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtpEvaluator

Send Task: Send Task: ResultResult
CompletesCompletes
Plan EvaluationPlan Evaluation

Return Task: Return Task: RtpRtp & & ResultResult

Creates SharedCreates Shared
MemoryMemory

LaunchLaunch
EvalEval

LoopsLoops
Request Task: Request Task: RtpRtp & & ResultResult

PruneRep() TASKPruneRep() TASK

MultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker

MultiRepTbmcsTaskerMultiRepTbmcsTaskerMultiRepTbmcsTasker

or

Figure 3-4: RTP Modification to Reflect Tasker Enhancements

 17

3.2.2 MultiRepRTCWorker
The MultiRepRTCWorker is used to run real-time JSAF executions (or executions of other
simulations) in order to support the state estimation capability in the MRF. The
MultiRepRTCWorker is responsible for running the real-time simulation, updating the simulation
with TBMCS information (in the case of the calibrated real-time simulation), and saving
checkpoints of the simulation to intermediate results files for effectiveness evaluations. The
sequence diagram of the MultiRepRTCWorker is shown in Figure 3-5. For the
MultiRepRTCWorker, the worker connects to the server and requests tasking. The Tasking, when
provided to the server from the MultiRepRTTasker (the old MultiRepTBMCSTasker) then
assigns tasks to the server, which are passed to the MultiRepRTCWorker. The
MultiRepRTCWorker executes JSAF tasks and sends results back to the Server every 15 minutes.
In addition, the MultiRepRTTasker continually updates the real-time simulation every 15
minutes.

MultiRepManagerMultiRepManagerMultiRepManagerMultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker MultiRepRtcWorkerMultiRepRtcWorkerMultiRepRtcWorker

RealTimeTask() TASKRealTimeTask() TASK

Connect to Connect to
TBMCS & TBMCS &

Compare to Compare to
ResultResult

Set EnvironmentSet Environment
VariablesVariables

LaunchLaunch
JSAFJSAF

LoopsLoops
~ 15 min~ 15 min

RealTimeTask() REQUESTRealTimeTask() REQUEST

RealTimeTask() RESPONSERealTimeTask() RESPONSE

Send Task: Send Task: ResultResult

Request Task: Request Task: ResultResult

Return Task: Return Task: ResultResult

Send Task: Send Task: RtpRtp

Send Task: Send Task: RtpRtp

CalibrateCalibrate
JSAFJSAF

SaveSave
JSAFJSAF

LoopsLoops

MultiRepManagerMultiRepManagerMultiRepManagerMultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker MultiRepRtcWorkerMultiRepRtcWorkerMultiRepRtcWorker

RealTimeTask() TASKRealTimeTask() TASK

Connect to Connect to
TBMCS & TBMCS &

Compare to Compare to
ResultResult

Set EnvironmentSet Environment
VariablesVariables

LaunchLaunch
JSAFJSAF

LoopsLoops
~ 15 min~ 15 min

RealTimeTask() REQUESTRealTimeTask() REQUEST

RealTimeTask() RESPONSERealTimeTask() RESPONSE

Send Task: Send Task: ResultResult

Request Task: Request Task: ResultResult

Return Task: Return Task: ResultResult

Send Task: Send Task: RtpRtp

Send Task: Send Task: RtpRtp

CalibrateCalibrate
JSAFJSAF

SaveSave
JSAFJSAF

LoopsLoops

Figure 3-5: Sequence Diagram for MultiRepRTCWorker

3.2.3 MultiRepRTWorker
The MultiRepRTWorker component simply executes the idealized plan in real-time. The
MultiRepRTWorker behaves like the MultiRepRTCWorker and MultiRepWorker with the
exception that the MultiRepRTWorker does not calibrate with real-time data. The
MultiRepRTWorker saves its state every 15 minutes and sends this information to the server. The
MultiRepRTWorker remains up and does not close during the execution of the MRF. The
sequence diagram of the MultiRepRTWorker is shown in Figure 3-6.

 18

MultiRepManagerMultiRepManagerMultiRepManagerMultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker MultiRepRtcWorkerMultiRepRtcWorkerMultiRepRtcWorker

RealTimeTask() TASKRealTimeTask() TASK

Loops 15 Loops 15
minutesminutes

Set EnvironmentSet Environment
VariablesVariables

LaunchLaunch
JSAFJSAF

LoopsLoops
~ 15 min~ 15 min

RealTimeTask() REQUESTRealTimeTask() REQUEST

RealTimeTask() RESPONSERealTimeTask() RESPONSE

Send Task: Send Task: ResultResult

Request Task: Request Task: ResultResult

Return Task: Return Task: ResultResult

SaveSave
JSAFJSAF

LoopsLoops

MultiRepManagerMultiRepManagerMultiRepManagerMultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker MultiRepRtcWorkerMultiRepRtcWorkerMultiRepRtcWorker

RealTimeTask() TASKRealTimeTask() TASK

Loops 15 Loops 15
minutesminutes

Set EnvironmentSet Environment
VariablesVariables

LaunchLaunch
JSAFJSAF

LoopsLoops
~ 15 min~ 15 min

RealTimeTask() REQUESTRealTimeTask() REQUEST

RealTimeTask() RESPONSERealTimeTask() RESPONSE

Send Task: Send Task: ResultResult

Request Task: Request Task: ResultResult

Return Task: Return Task: ResultResult

SaveSave
JSAFJSAF

LoopsLoops

Figure 3-6: Sequence Diagram for MultiRepRtWorker

Once these components were implemented, the control for this dynamic situation assessment
capability was defined and built within the MRF to handle the Real-Time Worker and Real-Time
Calibrated Worker components. The sequence diagram for these capabilities is shown in Figure
3-7.

REQUEST REQUEST TaskTask

MultiRepRtWorkerMultiRepRtWorkerMultiRepRtWorker MultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtcWorkerMultiRepRtcWorkerMultiRepRtcWorkerMultiRepManagerMultiRepManagerMultiRepManagerMultiRepTaskerMultiRepTaskerMultiRepTaskerMultiRepRtpTaskerMultiRepRtpTaskerMultiRepRtpTasker

ISSUE ISSUE ResultsResults

ISSUE ISSUE TaskTask

TaskTask RESPONSERESPONSE

CalibrateCalibrate
Task w/ RtpTask w/ Rtp

AdvanceTime()AdvanceTime()

REQUEST REQUEST Results Results && RtpRtp
REQUEST REQUEST TaskTask

TaskTask RESPONSERESPONSE

REQUEST REQUEST RtpRtp

RtpRtp RESPONSERESPONSE

LaunchLaunch
JSAFJSAF

AdvanceTime()AdvanceTime()

ISSUE ISSUE ResultsResults

Results Results && Rtp Rtp RESPONSERESPONSE

ISSUEISSUE EffectivenessEffectiveness

LaunchLaunch
JSAFJSAF

Check forCheck for
ResultResultISSUE ISSUE RtpRtp

ConnectConnect
TBMCSTBMCS

SleepSleep

CompareCompare
Results toResults to
RtpRtp

REQUEST REQUEST TaskTask

MultiRepRtWorkerMultiRepRtWorkerMultiRepRtWorker MultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtcWorkerMultiRepRtcWorkerMultiRepRtcWorkerMultiRepManagerMultiRepManagerMultiRepManagerMultiRepTaskerMultiRepTaskerMultiRepTaskerMultiRepRtpTaskerMultiRepRtpTaskerMultiRepRtpTasker

ISSUE ISSUE ResultsResults

ISSUE ISSUE TaskTask

TaskTask RESPONSERESPONSE

CalibrateCalibrate
Task w/ RtpTask w/ Rtp

AdvanceTime()AdvanceTime()

REQUEST REQUEST Results Results && RtpRtp
REQUEST REQUEST TaskTask

TaskTask RESPONSERESPONSE

REQUEST REQUEST RtpRtp

RtpRtp RESPONSERESPONSE

LaunchLaunch
JSAFJSAF

AdvanceTime()AdvanceTime()

ISSUE ISSUE ResultsResults

Results Results && Rtp Rtp RESPONSERESPONSE

ISSUEISSUE EffectivenessEffectiveness

LaunchLaunch
JSAFJSAF

Check forCheck for
ResultResultISSUE ISSUE RtpRtp

ConnectConnect
TBMCSTBMCS

SleepSleep

CompareCompare
Results toResults to
RtpRtp

Figure 3-7: Dynamic Situation Assessment Sequence Diagram.

 19

3.3 Real-time Extensions
Extensions are being designed for the MRF to better address the extraction and calibration
process using real-time C4I data. These extensions involve pulling in Route Planning capabilities
and pulling in real-time data feeds for Blue-Force tracking. These are depicted in Figure 3-8 and
Figure 3-9.

JSAFJSAFJSAFSIM P.C.SIM P.C.SIM P.C.TBMCSTBMCSTBMCS Spreadsheet
WR

SpreadsheetSpreadsheet
WRWR

Route
Planner
RouteRoute

PlannerPlanner

JSAFJSAFJSAFSIM P.C.SIM P.C.SIM P.C.TBMCSTBMCSTBMCS Spreadsheet
WR

SpreadsheetSpreadsheet
WRWR

Route
Planner
RouteRoute

PlannerPlanner

Figure 3-8: Incorporating Route Planning in the MRF

RT JSAFRT JSAFRT JSAF

TBMCSTBMCSTBMCS Live DataLive DataLive Data JTIDSJTIDSJTIDS SATCOMSATCOMSATCOM TADWTADWTADW

RT JSAFRT JSAFRT JSAF

TBMCSTBMCSTBMCS Live DataLive DataLive Data JTIDSJTIDSJTIDS SATCOMSATCOMSATCOM TADWTADWTADW

Figure 3-9: Incorporating Real-time Data Feeds for Providing Blue Force Information

3.4 Modification of Objects in MRF/JSAF
Functions were implemented to allow simulations to automatically create and modify objects in
JSAF using the DSAP framework. Three approaches were examined in this regard: the use of
sockets, the use of shared memory, and the use of checkpoint restart functionality. Each of these
is described in detail below along with an analysis concerning the approach.

3.4.1 Checkpoint/Restart Approach
A checkpoint restart approach was initially implemented that allowed for modifying simulation
state. This approach extended upon the implementation used to provide the faster-than-real-time
predictive analysis capability in the previous effort. In this approach, JSAF (or other simulations)
simulations were checkpointed at a user-defined point in time. This checkpointing approach used
JSAF’s native checkpointing capability to write the simulation state to a binary checkpoint
and/or a comma delimited Excel file. The checkpoint data could then be updated or calibrated
with real-time information from TBMCS or TBONE by reading-in comma delimited (or other
formats) files upon JSAF’s normal initialization process.

For binary checkpoints, the simulation restarted could restart from the binary checkpoint and
then overwrite, delete or add information specified in the comma delimited initialization file.
Drawbacks to this approach was that the simulation had to be restarted from the binary
checkpoint. This process was time consuming (some benchmarks from the previous effort
showed that this process took around 90 seconds for the Korea scenario) and affected the ability

 20

of DSAP to scale for faster-than-real-time simulations and hindered the user/analysts ability to
use DSAP to evaluate plans and COAs in smaller time segments.

For comma delimited checkpoints, the checkpointed files could be augmented by DSAP and the
MRF and used to initialize JSAF from the updated or calibrated simulations. This approach also
required a timely checkpoint and startup process. This approach resulted in “missing” and
incomplete operational state data that was not stored in the checkpoints.

3.4.2 Shared Memory Approach
The second approach that was investigated for calibrating or updating simulation runs was the
use of shared memory. In this approach, simulation state variables on running JSAF simulations
were stored in shared memory on computing platforms where the MultiRepWorker also had
access to that memory segment. In this case, the shared memory could be updated by the
MultiRepWorker with calibration information from TBMCS or TBONE without having to
checkpoint and restart the simulation. This approach enabled the update of simulation values
directly in memory.

Drawbacks to this approach were that the user/developer needed to know exactly where, in
memory, the simulation state variables were stored. This process was very dependent upon
scenario size and complexity and required a new solution for each scenario being executed.

3.4.3 Sockets Approach
The third approach considered the use of Sockets for updating the running simulation. In this
approach, sockets could be opened for a JSAF simulation running on a MultiRepWorker (or a
MultiRepRTCWorker). The simulation internal state could be updated by executing native JSAF
calls through this socket interface. Few drawbacks were apparent using this approach. The
approach did not require a checkpoint and restart process and scaled more readily than the shared
memory approach.

3.4.4 Summary of Calibration Methods
An analysis of these implementations has shown that the socket-based approach is the most
effective at modifying the PO (Persistent Object) databases. There are some issues that are
currently being examined that entail synchronizing the running simulation with the modified PO
database. These are still being worked out.

3.5 Extracting Damage Results
While this effort developed processes for calibrating real-time simulations using TBMCS or
TBONE data, the effort also took steps to store damage and operational state information for the
running JSAF simulations to use in the Raw and Real Effectiveness calculations determined by
the MultiRepPlanEvaluator and MultiRepRTPEvaluator components. The code added to the
JSAF source code is highlighted in the snippet box below.
void SaveUnitStatus(char *fileName, PO_DATABASE *po_db) {

 if (!po_db) {
 cout << "ERROR: po_db does not exist!" << endl;
 return;
 }

 ofstream outFile(fileName);

 21

 if (!outFile) {
 cout << "ERROR: file " << fileName << " could not be opened!" << endl;
 return;
 }

 cout << "Saving Unit Status..." << endl;
 int i;
 PO_DB_ENTRY *entry;
 time_pause(po_db->save_load_pause_handle);
 outFile << "CALLSIGN,UNIT TYPE,POSITION,LAT,LON,Z,TOTAL,CAPABLE,DAMAGED,DESTROYED"
 << endl << endl;

 for (i=0; i<PO_MAX_OBJECT_CLASS; i++) {
 for (entry = po_db->object_classes[i]; entry; entry = entry->next_class) {
 if (!entry->implied && !entry->deleted) {
 string callsign = (char *)PO_UNIT_DATA(entry).marking.text;
 string type = stdname_get_standard(
 protocol_find_name(PO_UNIT_DATA(entry).objectType));
 if (!callsign.empty() && type != "Constant Unknown") {

 struct usg_sub_counts usc;
 usc.total = 0;
 usc.capable = 0;
 usc.damaged = 0;
 usc.destroyed = 0;

 unitorg_traverse_tree(entry,
 TRUE,
 UsgAddVehicle,
 (UNITORG_FUNCTION_ARG)&usc);

 LatLonCoordinates ll = GcsToLatLon(PO_UNIT_DATA(entry).location);

 outFile << callsign << ","
 << type << ","
 << UsgGetLocString(PO_UNIT_DATA(entry).location) << ","
 << ll.Lat << ","
 << ll.Lon << ","
 << ll.Z << ","
 << usc.total << ","
 << usc.capable << ","
 << usc.damaged << ","
 << usc.destroyed << endl;
 }
 }
 }
 }

Code Segment 3-1: Code for Extracting Damage and State Results from Running JSAF Simulations

3.6 Summary
This section has detailed the modifications and enhancements performed on this effort to
DSAP’s MRF to support the real-time Dynamic Situational Awareness capability for operational
C2. This effort developed real-time simulation components for MultiRepWorkers to support
idealized and calibrated simulations, re-defined the control flow for real-time dynamic situational
awareness applications, implemented mechanisms to extract damage and operational state data
from running real-time simulations, and implemented mechanisms to calibrate real-time
simulations from TBMCS or TBONE inputs.

 22

4.0 Extending DSAP for a Service Oriented Architecture
The DSAP Framework prototype has been implemented in a grid-computing environment using
Object Request Broker technology. This infrastructure allows available processors within the
environment to perform work and generate tasks as their time becomes available. The
implementation interacts with real-time databases via a classic 3-tiered architecture by
subscribing to information updates in TBMCS and TBONE. One of the major goals of this effort
was to initiate the process of making the DSAP Framework “GIG-ready.”

One of the overarching goals of this effort was to start extending the DSAP Framework to
support Network Centric Operations and Warfare (NCOW). To address this goal, the DSAP
Framework is being enhanced to work with Network Centric Enterprise Services (NCES) in a
Service Oriented Architecture in order to support applications utilizing the Global Information
Grid (GIG). The starting point for ensuring that DSAP supports the GIG was to ensure that
elements of the infrastructure provide a publish/subscribe capability. This publish/subscribe
capability enables processing nodes to (1) publish data or information, (2) subscribe to published
data or information, and (3) support query on demand operations for posted data. The operation
of the DSAP Framework in this context is described as follows and is depicted in Figure 4-1.

Security
Services

Monitoring
Services

Service
Registries

Messaging
Services

Data
Services

Transformation
Services

Security
Services

Monitoring
Services

Service
Registries

Messaging
Services

Data
Services

Transformation
Services

Security
Services

Service
Registries

Messaging
Services

Messaging
Services

Data
Services

Data
Services

Transformation
Services

Publish (results)
Subscribe (Plan and
Intelligence Data)

Automated search of data services
using metadata. Pulls data of
interest. Based on producer
registered format and definitions,
translates into needed structure.

Service Consumer

Automated search of data services
using metadata. Pulls data of
interest. Based on producer
registered format and definitions,
translates into needed structure.

Service Consumer

Intelligence
DB

Publish (plans)
Subscribe (results)

ATO
DB

Plan
DB

DSAP/MR
F

Enterprise
Services

Security
Services

Monitoring
Services

Service
Registries

Messaging
Services

Data
Services

Transformation
Services

Security
Services

Monitoring
Services

Service
Registries

Messaging
Services

Data
Services

Transformation
Services

Security
Services

Service
Registries

Messaging
Services

Messaging
Services

Data
Services

Data
Services

Transformation
Services

Security
Services

Monitoring
Services

Service
Registries

Messaging
Services

Data
Services

Transformation
Services

Security
Services

Monitoring
Services

Service
Registries

Messaging
Services

Messaging
Services

Data
Services

Data
Services

Transformation
Services

Security
Services

Monitoring
Services

Service
Registries

Messaging
Services

Messaging
Services

Data
Services

Data
Services

Transformation
Services

Security
Services

Service
Registries

Messaging
Services

Messaging
Services

Data
Services

Data
Services

Transformation
Services

Publish (results)
Subscribe (Plan and
Intelligence Data)

Automated search of data services
using metadata. Pulls data of
interest. Based on producer
registered format and definitions,
translates into needed structure.

Service Consumer

Automated search of data services
using metadata. Pulls data of
interest. Based on producer
registered format and definitions,
translates into needed structure.

Service Consumer

Automated search of data services
using metadata. Pulls data of
interest. Based on producer
registered format and definitions,
translates into needed structure.

Service Consumer

Automated search of data services
using metadata. Pulls data of
interest. Based on producer
registered format and definitions,
translates into needed structure.

Service Consumer

Intelligence
DB

Publish (plans)
Subscribe (results)

ATO
DB

Plan
DB

DSAP/MR
F

Enterprise
Services

Figure 4-1: Enhancing DSAP for a Service Oriented Architecture

The underlying communications infrastructure of the DSAP framework was augmented with
publish/subscribe functionality. While providing these underlying mechanisms for Network
Centric Operations, additional work was performed to define the data and services that the DSAP
Framework will provide to the GIG community.

 23

For example, in their paper on M&S in the GIG environment presented at the IITSEC
Conference in 2004, Numrich, Hieb, and Tolk present a view for supporting NCOW in a GIG
environment. Among the elements discussed is a value chain based around the concepts of Data
Quality, Information Quality, Knowledge Quality, and Awareness Quality. The DSAP
Framework can be viewed as a tool for supporting NCOW because it provides measures to
support Data Quality (through connections with databases), Information Quality (through
connections with live, operational feeds), Knowledge Quality (through modeling and simulation
using predictive simulation, and Awareness Quality (through the use of its real-time simulation
element as a state estimator). While the DSAP Framework matches up as a support tool for the
GIG, support for a web services paradigm is needed. This support is discussed below.

In order to address these concepts, the DSAP Framework is being enhanced to work with
Network Centric Enterprise Services (NCES) in a Service Oriented Architecture in order to
support applications utilizing the Global Information Grid (GIG). This work includes (1)
defining the granularity of services to which elements of the DSAP Framework will be broken
down for use in a GIG environment; and, (2) defining the types and format of data and messages
that will be transmitted between elements of the infrastructure and resources residing on the
GIG. These are discussed in Sections 4.1 and 4.2.

4.1 Defining the Granularity of Services for the GIG
The first objective in making the DSAP Framework “GIG-ready” is to identify the granularity of
the web services that will be provided. There are two ways that DSAP can be viewed in this
process (1) viewing DSAP as a coarse-grained tool that will play, as a whole, in the GIG
environment, or (2) a fine-grained set of services, each of which can play in the GIG
environment.

4.1.1 Coarse-grained Support for DSAP
This effort focused on enabling coarse-grained support for DSAP in a GIG environment. In this
manner, the DSAP Framework required use of services that enabled it to (1) initialize scenarios,
(2) define plans and objectives, (3) prune unnecessary or failing plans when it interacts with the
outside world, and (4) calibrate with updated C4I information. In addition, it also required the
use of simulation services to fulfill the needs of its simulation components.

In terms of the services that DSAP provides to the outside world, the DSAP Framework can (1)
execute simulations and replications and provide intermediate results, (2) evaluate simulations
and replications and provide evaluation results, and (3) provide state estimation information.

4.1.2 Fine-Grained Support for DSAP
This effort outlined the implementation of a fine-grained solution for DSAP that will be
implemented after the coarse-grained implementation. This finer-grained approach consists of
making the individual elements of the MRF web-enabled. In this process, each
Worker/Tasker/Manager in the MRF provides a simulation/replication execution or evaluation
services. These services and the data and message structure they require can be defined presented
to the GIG community to identify how potential DSAP users can interact with the framework
across a distributed enterprise.

 24

4.2 Defining the Data and Services for GIG Use
This effort defined the types of services that the DSAP Framework will support in a web
environment. Subsequent steps for making DSAP GIG-enabled entail describing the structure of
data and web services required to play in a GIG environment. There are four steps to this
process:

1. Structuring and describing the information to be exchanged

2. Specifying the web service

3. Accessing and communicating with the web service

4. Registering and locating web services

Each of these is described in the following subsections.

4.2.1 Structuring Information to Be Exchanged
The first step in defining the necessary data structure and services to make DSAP “GIG-ready”
involves structuring and describing the information that will be passed between elements of the
DSAP system. This includes defining the structure and type of data necessary to initialize
scenarios, describe plans, identify plan objectives and plan priorities, encapsulate plan and
replication results, provide plan evaluation information, and extract real-time information
between the different services provided by the DSAP Framework. A major emphasis in this area
is utilizing a format that can (1) be understood by Commanders and their staff at Air Operations
Centers, and (2) interact with tools utilized by Commanders and their staff at Air Operations
Centers. The primary mechanism for describing information in DSAP is the Extensible Markup
Language (XML). XML provides the description of data to be exchanged as well its storage and
transmission formats. A key facet of XML is that it allows for the definition of schemes that can
be used to define supported data types, content, and structure.

With this in mind, several languages and data models have been examined for use in supporting
DSAP in a GIG environment. These include: Military Scenario Description Language (MSDL),
Battle Management Language (BML), and the Command and Control Information Exchange
Data Model (C2IEDM). Each of these models/languages is described below, while outlining
their use in the DSAP Framework.

4.2.1.1 Military Scenario Description Language (MSDL)
Military Scenario Description Language (MSDL) is a language used to initialize and load
scenarios in a simulation environment through the use of an XML based data interchange format.
This format enables Command and Control (C2) planning applications to interchange the
military portions of scenarios with Simulations and other applications. MSDL targets the
initialization of simulations and C2 systems with initial state and planned actions.

For DSAP, MSDL is used to define the initial simulation scenarios and initial plans and
alternatives that the simulation elements will execute. MSDL also is used to define these
scenarios from real-time C4I intelligence data, or to pull representative scenarios from a scenario
databases. Use of MSDL enables DSAP users to utilize any MSDL-based scenario, or provide
scenario information in a standard format to other users on the GIG.

 25

4.2.1.2 Battle Management Language (BML)
The Battle Management Language is a vocabulary or lexicon used by simulation users and
developers to specify how to plan and automate military functions in support of Battle
Management activities. BML provides a data format for describing military behavior that is
derived from military doctrine. The resulting description is a standard that can be passed from
human to machine, or machine to machine. BML is used to (1) describe Command and Control
forces and equipment conducting military operations, and (2) provide for situational awareness
and a shared common operational picture.

The DSAP Framework implementation sends plan information, along with objectives and
priorities throughout the infrastructure using messages formatted as comma-delimited
spreadsheets. In the initial implementation, these messages were very difficult to decipher and
did not adhere to any standard lexicon, making their use by Commanders and their staff at Air
Operations Centers very difficult. To-be implementations of DSAP will alleviate this problem by
utilizing BML to address these deficiencies by specifying the plans (COAs) and alternatives that
will be executed by both the predictive simulation component and the simulation-based state
estimator. BML will also be used to specify plan objectives and priorities. These descriptions are
derived from military doctrine and will have much greater use when supporting activities at Air
Operations Centers.

4.2.1.3 Command and Control Information Exchange Data Model (C2IEDM)
The Command and Control Information Exchange Data Model (C2IEDM) is an information
exchange and data management model developed by NATO to specify the structure of
information passed between Command and Control Information Systems (C2IS). The C2IEDM
preserves the meaning and relationships of information to be exchanged between C2IS at the
Conceptual, Logical, and Physical levels.

The DSAP Framework will use the C2IEDM in conjunction with MSDL or BML to specify the
underlying relationships that populate its entities and actions for its simulation scenarios. The
C2IEDM can be used for data interchange at both initialization and in extracting and posting
intermediate and final results.

4.2.2 Specifying the Web Services
The second element defined for DSAP involves specifying and describing the types of web
services present in DSAP. The types of web services addressed include scenario generation, plan
generation, simulation/replication execution, simulation/replication evaluation,
simulation/replication pruning, simulation results publication, simulation evaluation publication,
state estimation publication, and simulation calibration. These services are described using Web
Service Description Language (WSDL). WSDL is a standard web service specification language
defined by the World Side Web Consortium (W3C) that describes the web service’s
functionality, location, content, constraints and input/output data structure.

4.2.3 Accessing and Communication with the Web Service
The third element of web services defined for the DSAP Framework with respect to its role in a
GIG environment is the methods that are used to access and communicate with its web services.
In the case of DSAP, future versions of the architecture will utilize Simple Object Access
Protocol (SOAP) as the basic protocol for its Object Request Broker technology. This will

 26

provide a message framework for exchanging data [5] and defining mappings for basic DSAP
functions that initialize scenarios or plans and post simulation and evaluation result information
to the GIG environment.

4.2.4 Registering and Locating Web Services
The fourth element of web services that has been defined for DSAP Framework with respect to
the GIG environment is the Registering and Locating of DSAP Web Services. To support the
registration of DSAP Web Services, DSAP will use Universal Distribution Discovery and
Interoperability (UDDI). Use of UDDI enables the discovery and use of DSAP Web Services by
other users residing on the GIG.

 27

5.0 Future Work
The DSAP Framework is being used to provide a prototype Predictive Analysis and Real-time
State Estimation capability for plans derived from Air Tasking Orders (ATOs) and their
alternatives while calibrating those plans with real-time C4I database inputs. The DSAP
Framework utilizes JSAF as both its predictive (faster-than-real-time) and real-time simulation
components, and pulls C4I information from Theater Battle Management Core System’s
(TBMCS) Air Operations Database (AODB) and Modernized Integrated Database (MIDB).
Additional simulation environments such as Air Warfare Simulation (AWSIM) and Force
Structure Simulation (FSS) are being investigated for use as the predictive simulation
component. In addition, this effort integrated DSAP with the web-service implementation of
TBMCS (T-Bone) where web-services are being used to extract information regarding Red Force
facilities and Blue Force tracks. This extraction is the first step in DSAP’s eventual support for
the Global Information Grid (GIG) through the use of web-service concepts.

To continue to build on successes of our DSAP work, future efforts will to continue to build on
MRF functionality and update the working prototype of the DSAP Framework in the Modeling
and Simulation (M&S) Facility at AFRL Rome Research Site. This future work will integrate
DSAP with other software modules and systems participating in the Joint Synthetic Battlespace
for Research and Development and target DSAP for participation in a military exercise or battle
experiment. Specifically, future efforts will target the following enhancements and tasks based
on our ongoing work in this area.

5.1 Improved Calibration and C4I Data Update
Future efforts will build on the current C4I calibration capability used by DSAP that employs
either basic publish/subscribe mechanisms or utilizes web-services to update the running
simulations. The current implementation demonstrates a C4I update capability by connecting to
TBMCS 1.1.4 (T-Bone) and extracting minimal track information through available web
services. Only minimal track information populates the current TBMCS implementation. For
these enhancement efforts, we will work to extract more detailed information from the Track
Management Database (TMDB) and potentially other modules (such as the SAA) to provide
better, more timely, updates to the DSAP software. Based on our current research, part of this
process may entail work with AFRL to populate tracks in the unclassified TBMCS that are
relevant to our test scenarios used by DSAP/JSAF or other simulation environments. Thus,
future efforts will entail working with the pertinent organizations to obtain the required access
need to populate the databases.

5.2 Integrate with Additional JSB-RD Components
One of our main goals for the DSAP Framework is to take advantage of additional software
components as part of the larger JSB-RD picture. DSAP functionality provides mechanisms to
simulate, calibrate, and evaluate tasks based on scenarios, mission plans and user-defined
priorities and objectives. Other elements of the JSB-RD include Visualization Modules, Plan
Generation Tools, Plan Optimization Tools, Situational Awareness and Analysis tools and
databases. Future efforts will work to define the interfaces between our existing DSAP
components to make use of these components as part of a larger integrated picture. The resultant
environment will then allow for extracting ATO information, generating plans from that
information (3rd party software), simulating plans (COAs) and alternatives. RAM Laboratories

 28

will also work with both contractor and AFRL personnel generating the visualization tools and
the user interfaces to provide a consistent format and API for specifying plan objectives and
priorities that can be passed to DSAP effectiveness modules.

5.3 Pushing Data
This effort determined that there is a need for pushing ISR situational awareness data in order to
populate TBMCS or TBONE databases. Future efforts will need to investigate, obtain the proper
access, and implement the required mechanisms for pushing simulated or estimated situational
awareness data to TBMCS, TBONE or other outside databases residing on the GIG.

5.4 Installation of an Operational Capability
This effort installed DSAP’s predictive and real-time state-estimation capability at AFRL. Future
efforts will continue to update DSAP and will work to integrate DSAP with the other JSB-RD
software modules at AFRL. The results will be a leave-behind capability that is integrated with
JSAF 2004, T-Bone and potentially other simulation components that can be utilized by
engineers, analysts, and developers in the laboratory.

5.5 Exercise Participation
A major goal for future efforts will be to integrate DSAP with other JSB-RD components and
utilize DSAP to provide C2 Situational Awareness as part of an exercise or Battle Experiment.
RAM Laboratories will work with the AFRL customer to identify the appropriate exercise
(possibly a JFCOM hosted exercise) and develop both the underlying simulations and database
inputs for use in that exercise. This will include working with AFRL and their customer to
identify the exercise scenarios, objectives, and key data sources and ISR elements that will be
considered by DSAP. Future efforts will entail working with available scenario generation tools
and plan generation tools to implement the simulation in JSAF or other embedded simulation
environments. Future efforts will also entail selecting and subscribing to the specific TBMCS
(TBONE) data and working with AFRL and additional contractor personnel to provide the
visualization and user-selection of plans and the desired situational awareness criteria.

 29

6.0 Bibliography
John R. Surdu. Connecting Simulation to the Mission Operational Environment. Ph.D. Thesis.
Texas A&M University. 2000

Alex F. Sisti. “Dynamic Situation Assessment and Prediction (DSAP)” Proceedings of SPIE,
Enabling Technologies for Simulation Science VII Vol.5091. 2003.

Dr. Paul Phister, Dr. Timothy Busch, and Igor Plonisch. “Joint Synthetic Battlespace:
Cornerstone for Predictive Battlespace Awareness.”

Reaper Jerome, Trevisani Dawn, and Alex Sisti. “Real-Time Decision Support System
(RTDSS)” Proceedings of the Western MultiConference. January, 2003.

McGraw Robert, Lammers Craig, and Steinman Jeff, 2004. “Software Framework in Support of
Dynamic Situation Assessment and Predictive Capabilities for JSB-RD”. In proceedings of the
SPIE - Enabling Technologies for Simulation Science VIII Conference.

McGraw Robert, Lammers Craig, and Trevisani Dawn, 2004. “Dynamic Situation Assessment
and Predictive Capabilities in Support of Operations”. In proceedings of the Fall Simulation
Interoperability Workshop, Orlando, FL. 2004.

McGraw Robert, Lammers Craig, Steinman Jeff, and Trevisani Dawn, 2005. “A DSAP
Framework for the Global Information Grid's Modeling and Simulation Community of Interest”.
In proceedings of the Spring Simulation Interoperability Workshop, San Diego, CA. 2005.

Lammers Craig, McGraw Robert, and Trevisani Dawn, 2005. “Applying a Multireplication
Framework to Support Dynamic Situation Assessment and Predictive Capabilities”. In
proceedings of the SPIE - Enabling Technologies for Simulation Science IX, Orlando, FL. 2005.

Effects Based Operations. Available: http://www.afrlhorizons.com/Briefs/June01/IF00015.html

Theater Battle Management Core Systems (TBMCS). Available
http://jitc.fhu.disa.mil/tbmcs/tbmcs.htm.

Available http://www.mstp.quantico.usmc.mil/modssm2/InfoPapers/INFOPAPER%20JSAF.htm

Numrich, S.K., Hieb, M., and Tolk, A. “M&S in the GIG environment: An Expanded View of
Distributing Simulation” Presented at the Interservice Industry Training Simulation Education
Conference. Orlando, FL. 2004.

http://e-mapsys.com/C2IEDM-MIP_Overview_20Nov2003.pdf

]Steinman Jeff, 2002. “The Standard Simulation Architecture.” In proceedings of the 2002 SCS
Summer Computer Simulation Conference.

Douglas Schmidt. ACE+TAO. Available http://www.cs.wustl.edu/~schmidt/.

Bailey Chris, McGraw Robert, Steinman Jeff, and Wong Jennifer, 2001. "SPEEDES: A Brief
Overview" In Proceedings of SPIE, Enabling Technologies for Simulation Science V, Pages
190-201.

RAM Object Request Broker Programming Guide, Version 1.2, DRAFT.

 30

7.0 Acronyms
ACE Adaptive Communication Environment

AODB Air Operations Data Base

AFRL Air Force Research Laboratory

ATO Air Tasking Order

BML Battle Management Language

C2IEDM Command and Control Information Exchange Data Model

C2IS Command and Control Information Systems

C4I Command, Control, Communications, Computers, and Intelligence

CCSE Common Component Simulation Engine

COA Course Of Action

CORBA Common Object Request Broker Architecture

DSAP Dynamic Situation Assessment and Predictive

FSS Force Structure Simulation

FTRT Faster Than Real Time

GCCS Global Command and Control System

GIG Global Information Grid

GUI Graphical User Interface

IFSB Information Systems Branch

IITSEC Interservice Industry Training Simulation Education Conference

JDBC Java Data Base Connectivity

JDK Java Developer’s Kit

JSAF Joint Semi-Automated Forces

JTIDS Joint Tactical Information Delivery System

JWARS Joint WarGaming System

MIDB Modernized Integrated Data Base

MRF Multiple Replication Framework

MSDL Military Scenario Description Language

NATO North Atlantic Treaty Organization

NCES Network Center Enterprise Services

NCOW Network Centric Operations and Warfare

ODBC Open Data Base Connectivity

 31

ORB Object Request Broker

OS Operating System

POC Point of Contact

RT Real Time

RTP Real Time Picture

SATCOM Satellite Communications

SBIR Small Business Innovative Research

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SPEEDES Synchronous Parallel Environment for Emulation and Discrete Event
Simulation

TAO The ACE ORB

TBMCS Theater Battle Management Core System

XML Extensible Markup Language

